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ABSTRACT

The future operations of transportation systems involve enormous uncertainty – in both

input and model parameters. This work investigates the stability of contemporary transport

demand model output by quantifying variability in model input, such as zonal socioeconomic data

and trip generation rates. It simulates the propagation of their variation through a series of

common demand models over a simplified twenty-five-zone network. The results suggest that

uncertainty may be compounded over a series of models and highly correlated across output.

The propagated uncertainty varies remarkably in link flows, thus, some link flows may be more

uncertain than others. The final step model, trip assignment, may reduce prior increased

uncertainty through the first three steps, but generally could not lessen the uncertainty lower than

the input uncertainty. Mispredictions at early stages (e.g., trip generation) in multi-stage models

appear to amplify across later stages; thus, improvements to these models and their estimates

are sorely needed.
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EXECUTIVE SUMMARY

The future operations of the transportation system involve enormous uncertainty.

Generally, large-scale transport demand models are estimated sequentially, with the results or

estimates of one model acting as inputs to subsequent models. In almost all cases, only point

estimates are passed forward, rather than estimates of variation and covariation. Such modeling

processes limit the final results to point estimates, so comparisons of plans or scenarios based on

the results may be incorrect. This work investigates the stability of contemporary transport

demand output by simulating four-step model over a 25-zone network. Sensitivity analysis is

adopted to target resources to overall uncertainty.

Current travel-demand-modeling practice does not acknowledge the stochastic

uncertainty, especially input uncertainty. For example, structured statistical models produce

variance and covariance matrices with their point estimates. However, only point estimations of

parameter mean values are carried forward through travel demand models. The covariance

information is generally lost. Many variables used as input in transport demand models come

from other models, whose associated uncertainty is not known or incorporated. If point estimates

of these future variables (such as population, housing, and automobile ownership) are to be used

in travel demand models, an appreciation of variability in all results requires distributional

information on the input..

To assess some forms of uncertainty in model predictions, most transport modeling

processes employ “model validation” to test a model’s forecast ability. Uncertainty in future

forecast due to input and inherent uncertainty, however, changes over time. Thus, there is no

guarantee that future predictions will be bounded by the acceptable range of uncertainty. A

“before and after” study is another method used to assess a model’s predictive accuracy. It also

is difficult to draw useful conclusions from an individual study (Aitken and White, 1972).

There is a fair amount of transportation research really focused on modeling

uncertainties. Most of them adopted a simulation technique to capture uncertainty patterns.

Using simulation techniques, Ashley (1980) studied the probability distribution of various outputs

from an interurban highway scheme forecast model. His approach simultaneously accounted for

uncertainty from a variety of sources. Correlated input variables were drawn from multivariate

probability distributions. However, Ashley’s study gave no information about which error source

contributes most to the overall uncertainty. Due to cost and computing limitation, stochastic

simulation was not widely applied in other modeling studies. Pell (1984) suggested a method to

estimate variability in travel demand forecasts based on identifying those sources of input

uncertainty and error that make the largest contributions to forecast uncertainty. He proposed two

criteria for selecting the most important error sources. One is the sensitivity of forecasts to input
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errors, as measured by elasticity. Another is the magnitude of forecast errors, as measured by

coefficient of variation. Nevertheless, his study did not employ correlated input variables.

Simulation techniques are suggested as one of the most useful methods in this field

because one can simulate uncertainty from a variety of sources simultaneously. Furthermore,

simulation methods are capable of setting multivariate distributions with covariation. This study

adopts Monte Carlo simulation. In such a simulation, a model is run repeatedly, using different

data drawing from their distribution assumptions. In this approach, the study focuses on

covariation simulation. Sensitivity analysis is another effective method to study uncertainty. It

traces output uncertainty back to input; thus, it can reveal both the linear relationship and the non-

linear relationship between input uncertainty and output uncertainty. Two correlation coefficients

are calculated in this study. The sample correlation coefficient provides an initial estimate of any

linear relationship between the input and output. The rank correlation coefficient more

appropriately suggests any strong non-linear relationship.

This work considers the traditional UTPP model paradigm via its four primary

components: trip generation, trip distribution, mode choice, and route selection. To simplify the

model structure, this study uses a cross-classification model to calculate the home based work

trips (HBW) in trip generation. In this study, three types of employment are used: basic

employment, retail employment, and service employment. Five types of zones are specified

based on the population and employment density. A common gravity model form is used for trip

distribution, with a production constraint. A simple exponential function is used as the impedance

function for the gravity model This study simplifies the travel mode choice between public transit

and drive-alone and uses a binary logit model for mode split. It employs a user equilibrium

method in its trip assignment model and incorporates a standard Bureau of Public Roads link

capacity function in searching for convergence to an equilibrium state. This study uses the larger

BPR parameter values as NCHRP report 365 suggested.

All together, this sequence of four sub-models produces a set of link-flow estimates.

These are the model outputs of greatest interest in this work. The four-step model approach is

applied into a road network with 25 zones and 818 links, which is separated from the Dallas-Fort

Worth highway system. For outside input, this study uses the demographic data associated with

the data. For model parameters, this study uses mean values from DFW area travel model

description report (NCTCOG 1999). Necessary simplification and modification has been made

based on two published formal manuals (NCHRP Report 187 and 365).

The modeling software used here for the first three sub-model steps (i.e., trip generation,

trip distribution, and mode choice) is @Risk (Palisade 1998), which loads through Microsoft Excel

software. TransCAD (Caliper Co., 1996) is used here for the final, trip assignment sub-model in

order to apply its commercialized UE algorithm.
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The sequence of four-step sub-models produces a set of link-flow estimates. The study

simulates the forecasting approach by repeating running the four-step models for 100 times. Two

arcs are chosen as the critical links. Critical link one presents the general pattern of links with

congested volumes, while critical link two presents others with non-congested volumes. All the

uncertainty in terms of coefficient of variation are set to be 0.30. As evident in the overall

uncertainty results, the variability of the selected link flows is sizable. Both coefficients of variation

of the two link flows are larger than 0.30, which suggests the final uncertainty may be

compounded to be higher than any input or parameter uncertainty. The flow uncertainty appears

not to have a strong relation with congestion. However, the average travel time on the link shows

a relatively strong relation with congestion. The travel time uncertainty of the congested link,

1.899, is much higher than that of the uncontested link, 0.127. The total vehicle mile traveled

(VMT) of the network is a weighted sum of individual link flows. The uncertainty of VMT, in terms

of the coefficient of variance, 0.236 is relatively low. The link flows show great correlation

between one another. For probabilistic simulations, correlations greater than 0.5 between input

and output indicate substantial dependence. Since the total VMT is the weighed sum of all link

flow volumes, there is a strong correlation between total VMT and individual link flows. That

explains why the uncertainty of total VMT is generally lower than that of most links.

In each model step, there is a finite amount of input and output. Given the distribution

assumption of the input and parameters of the model, the simulation yields 100 observations of

each output. Although the amount of output of each step is different, the average coefficient of

variation can be collected to track the changes in uncertainty through each step. The five

percentile and ninety-five percentile of the uncertainty among each step is also collected to

indicate the variability of the uncertainty.

As can be seen, the increasing average uncertainty in the first three step models

suggests significant uncertainty propagation through those models. Nevertheless, the final step

assignment model reduces the previous compounded uncertainty, but it generally cannot lessen

the uncertainty to a level lower than the input uncertainty. The expanding 5% and 95% bound

suggests that through the four-step model, the variability of final uncertainty extends. Thus, some

link flows’ uncertainty may be reduced substantially while others may increase considerably,

which indicates the possibility for wide swings in system. However, one can improve the UTPP

model forecasting if he cannot avoid this problem. One passable solution for that is to provide the

information regarding uncertainty in final results. Then the policymakers will be aware of the

uncertainty when comparing scenarios.

One can compare the output’s sensitivity to parameters in each model step. Not

surprising, the parameter which has the strongest correlation with link flows is the trip generation

rate. This is partly consistent with Smith and Cleveland’s results (1976). Also, the overall output is

sensitive to the demographic input. Most zonal demographic inputs contribute substantially to the
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overall uncertainty in link flows. Given the linear function pattern of the trip generation model, it is

not surprised that the demographic inputs and the trip generation parameters show strong linear

correlation with the overall outputs. The pattern is more obvious for the link flows nearby, which is

consistent with Mackinder and Evans’ study (1981). However, the overall uncertainty evinces a

relatively small sensitivity to other three models (trip distribution, mode split, and trip assignment).

Future work on this and related topic is needed. For example, applications on more

realistic networks may be examined. A variety of common model types can be tested. Moerover,

one may compare different uncertainty level in input resulting overall uncertainty. Modeler then

will be able to know which part of the modeling approach needs more work and how intense the

effort should be. Additionally, feedback from travel-time estimates to destination, mode, and route

choices is needed.
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THE PROPAGATION OF UNCERTAINTY THROUGH TRAVEL

DEMAND MODELS

CHAPTER 1. INTRODUCTION

The future operations of the transportation system involve enormous uncertainty.

Modeling these complicated systems requires many variables and behavioral components whose

variability may be poorly identified or simply ignored. Without explicit and rigorous statistical

recognition of uncertainty in transportation demand forecasts, transportation planning of towns,

cities, and metropolitan areas represents a veritable gamble. Transportation plans and polices

based on these forecasts may be inaccurate and even misleading. Thus, a lot of money may be

wasted in transport facility investment.

Generally, large-scale transport demand models are estimated sequentially, with the

results or estimates of one model acting as inputs to subsequent models. In almost all cases, only

point estimates are passed forward, rather than estimates of variation and covariation. Such

modeling processes limit the final results to point estimates, so comparisons of plans or scenarios

based on the results may be incorrect. First, the estimates for different plans or scenarios may

overlap with one another. Moreover, the difference between the comparisons may not be

statistically significant.

This work investigates the nature of uncertainty propagation in contemporary transport

demand models. The objective of this study is to quantify variability in model output and to track

the sources of the variability back into input. Monte Carlo simulation and sensitivity analysis are

used to investigate the propagation of this variation over a simplified network.

The rest of this paper is organized as follows. The next section describes the study

background and literature review. Section 3 specifies the model structure and assumptions.

Section 4 discusses the simulation results and sensitivity analysis. The final section provides a

summary of the research findings and identifies possible extensions of the current research.
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CHAPTER 2. BACKGROUND

First, the technique background and review related literature on the study of uncertainty

in travel demand modeling are discussed. There are many sources that produce forecast errors.

Modelers can do relatively little to the errors due to measurement, sampling, computation, model

specification, and aggregation. (Barton-Aschman,1997). In contrast, purely stochastic errors can

be accommodated statistically. Components of these stochastic errors arise from three sources,

which here are termed “inherent uncertainty”, “input uncertainty”, and “propagated uncertainty”.

Since travel demand model parameters are random variables, estimated from samples of the

population, model estimates are associated with variations and covariations. This outcome

constitutes inherent uncertainty. Also, the use of predictions of future demographic data (e.g.,

employment and land use) as input to traffic demand forecasting models contribute input

uncertainty. Moreover, since transport demand models are generally estimated and applied

sequentially, the results or estimates of one model act as input to subsequent models. Their

uncertainty is passed forward, producing propagated uncertainty. The cumulative impact of these

three forms of uncertainty is the focus of this research.

Unfortunately, current travel-demand-modeling practice does not acknowledge all these

sources of uncertainty, especially input uncertainty. For example, structured statistical models

produce variance and covariance matrices with their point estimates. However, only point

estimations of parameter mean values are carried forward through travel demand models. The

covariance information is generally lost. Many variables used as input in transport demand

models come from other models, whose associated uncertainty is not known or incorporated. If

point estimates of these future variables (such as population, housing, and automobile

ownership) are to be used in travel demand models, an appreciation of variability in all results

requires distributional information on the input. As an illustration of this, Smith and Shahidulla

(1995) have suggested that the predictive value of census tract projections is quite limited over a

ten-year period.

Modeling methods based on point estimates dramatically constrain all final results into

point estimates, and the point estimates may be highly biased. For example, the expected value

of a linear function of independent variables requires only mean values of the input variables.

However, non-linear functions and any functions involving correlated variables require

distributional information in order to avoid bias when estimating the function’s mean value (See,

e.g., Rice, 1995). Comparisons of alternative transportation plans or scenarios based on these do

not convey information regarding uncertainty in estimates – or the statistical significance of
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differences. Neglect of data and parameter uncertainties and their correlation ultimately mean

that transportation planning, policy-making, and infrastructure decisions are much more of a

gamble than they need to be.

To assess some forms of uncertainty in model predictions, most transport modeling

processes employ “model validation” to test a model’s forecast ability. Although validation

compares model predictions to observations using the data that are not used in model estimation,

this step can only assess the model’s predictive strength for contemporary behavior. Uncertainty

in future forecast due to input and inherent uncertainty, however, changes over time. Thus, there

is no guarantee that future predictions will be bounded by the acceptable range of uncertainty.

Barton-Aschman et al. (1997) have provided a set of specific guidelines for model

validation, but they also have recognized that input error (and inherent uncertainty) propagates to

overall uncertainty. There is the concern that each step in the Urban Transportation Planning

System (UTPS) models could possibly increase the overall error. They write: “while there is a

potential for the errors to offset each other, there is no guarantee that they will.” (pp. 12) No

attempt is made to quantify the propagated uncertainty.

A “before and after” study is another method used to assess a model’s predictive

accuracy. It also is difficult to draw useful conclusions from an individual study (Aitken and White,

1972). Such examples can be seen in the following studies: Horowitz and Emsile,1978, ITE,1980,

and Mackinder and Evans,1981. Additionally, without sensitivity analysis, one does not know

which resource contributes the main part of the uncertainty. Mackinder and Evans (1981) have

suggested that the errors in socioeconomic variables might dominate highway volume forecast

errors. Moreover, percent root mean square error (%RMSE) is being estimated to validate traffic

assignment models by comparing predicted and observed flow volume. Practical results (e.g.

NCHRP Report No. 365) suggest that average hourly or daily flow forecasts come with %RMSE

of 30 to 50 percent, and links with low flows tends to have higher %RMSE than those with high

flows.

There is a fair amount of transportation research really focused on modeling

uncertainties. Most of them adopted a simulation technique to capture uncertainty patterns. For

example, Robbins (1978) estimated the possible error in each of the four step models. However,

several of his assumptions were naïve. Bonsall (1977) proposed a more systematic approach

with sensitivity analysis, but no particular distribution was specified.

There are some more sophisticated approaches. Using simulation techniques, Ashley

(1980) studied the probability distribution of various outputs from an interurban highway scheme

forecast model. His approach simultaneously accounted for uncertainty from a variety of sources.

Correlated input variables were drawn from multivariate probability distributions. However,
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Ashley’s study gave no information about which error source contributes most to the overall

uncertainty. Due to cost and computing limitation, stochastic simulation was not widely applied in

other modeling studies. Pell (1984) suggested a method to estimate variability in travel demand

forecasts based on identifying those sources of input uncertainty and error that make the largest

contributions to forecast uncertainty. He proposed two criteria for selecting the most important

error sources. One is the sensitivity of forecasts to input errors, as measured by elasticity.

Another is the magnitude of forecast errors, as measured by coefficient of variation. He

recommended fewer simulation runs after identifying the influence of a small number of uncertain

sources. Nevertheless, his study did not employ correlated input variables.

There are many other less relevant studies in uncertainty analysis. For example, Rose’s

network study (1986) focused on flow predictions and did not account for correlated input.

Leurent (1997) developed a sensitivity and uncertainty analysis method for the equilibrium

solution of a dual criteria model on a small-scale network.

In summary, many researchers have seriously studied the propagation of uncertainty

through travel demand models. Simulation techniques are suggested as one of the most useful

methods in this field because one can simulate uncertainty from a variety of sources

simultaneously. Furthermore, simulation methods are capable of setting multivariate distributions

with covariation. Sensitivity analysis is another effective method to study uncertainty. It traces

output uncertainty back to input; thus, it can reveal both the linear relationship and the non-linear

relationship between input uncertainty and output uncertainty. Due to cost and computational

limitation, prior studies have several common weaknesses. First, few large-scale data

applications have been accomplished in the past. Another limitation is that no firm conclusion has

been approached.
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CHAPTER 3. MODEL APPLICATION

This study adopts the effective methods suggested by prior research. It investigates the

stability of contemporary transport demand model’s output. The models studied here are the

traditional, four-step urban transportation planning process (UTPP) models. There are two main

methods, Monte Carlo simulation and sensitivity analysis to be used here. Hahn and Shapiro

(1967) illustrated the general approach using Monte Carlo simulation. In such a simulation, a

model is run repeatedly, using different data drawing from their distribution assumptions. In this

approach, the study focuses on covariation simulation. Another technique used here is sensitivity

analysis (Cullen and Frey, 1999). Two correlation coefficients are calculated in this study. The

sample correlation coefficient provides an initial estimate of any linear relationship between the

input and output. The rank correlation coefficient more appropriately suggests any strong non-

linear relationship.

This work considers the traditional UTPP model paradigm via its four primary

components: trip generation, trip distribution, mode choice, and route selection. The following is a

discussion of model specification.

3.1 Trip Generation

Trip generation models have two basic structures: (1) regression equations at an

aggregate (zonal) or disaggregate (household/person) level, and (2) cross-classification of trip

rates at an aggregate level. Kassoff and Deutschman (1970) suggested that disaggregate models

represent the true correlation between and variation within variables and produce better results in

comparison with aggregate models. However, the stability of trip rate model parameters may not

be strong across different data sets. Kannel and Heathington’s (1973) study results indicated

temporal stability of trip rates, but tests by Smith and Cleveland (1976) rejected this stability in trip

rates from Detroit survey data. To simplify the model structure, this study uses the following

simplified cross-classification models to calculate the home based work trips (HBW).

Trip Production:

rate.nproducatiotriptheisand

,zoneinhouseholdsofnumbertotaltheis

,zoneinproducedtripsHBWofnumbertheiswhere

α

iiHH

iiT
iHHiT )1(α=
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Trip Attraction:

l.typezoneinktypeemploymentofrateattractiontriptheisβand

,otherwise0l,typezoneisizoneif1equalswhichvaraiabledummytheisx

i,zoneinktypeemploymentofnumbertotaltheisEMP

i,zoneinattractedtripsHBWofnumbertheisiAwhere

kj

il

ik

)2(
,
∑=

lk
ilikkj xEMPiA β

In this study, three types of employment are used: basic employment, retail employment,

and service employment. Five types of zones are specified based on the population and

employment density.

3.2 Trip Distribution

In general, trip distribution models used in practice come from one of two basic

structures: the growth factor (Fratar) model and the gravity model. The most common model form

used for trip distribution is the gravity model, and this is the model used here, with a production

constraint. This model form, subject to a production constraint, is defined as follows:

)3(
)(

)(

















∑
i

tF ikAk

tF ijA j
iT=T ij

where Tij is the number of trips from zone i to zone j,

Ti is the number of trip productions in zone i,

Aj is the number of trip attractions in zone j,

tij is the impedance (time or generalized cost) from i to j,

and F(tij) is the impedance function recognizing travel cost between zones i and j.

The impedance function should be inversely related to zonal separation. Gamma, power,

or exponential functions usually are used. Here a simple exponential functions is used, as follows:

)4()( γ
ijtijtF =

where γ is the impedance parameter.

Equation 3 yields a trip matrix consistent with the number of productions in each zone but

not with the number of attractions. Thus, this form of the gravity model is “singly constrained”.

This study applies three iterations switching between the attraction constrained calculation and

the production constrained calculation to balance the trip matrix.

Murchland (1978) has suggested, via extensive calculation, that for small errors in both

trips generated and impedance matrix values, the relative variance (i.e., the coefficient of
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variation squared) of the resultant cell values is approximately the sum of the relative variances of

the input.

3.3 Mode Split

Multinomial and nested logit models are very common models of mode choice. A

multinomial logit (MNL) specification essentially assumes equal competition across alternatives.

Using this model the proportion of trips made by mode m between zones i and j is the following:

)5(
|

|

|Pr

∑

=

l

ijlV
e

ijmV
e

ijm

where Vm|ij is the utility of mode m given origin i and destination j. Vm|ij is specified to be a

linear function of trip time, cost, and other variables. Here a simple linear function is used:

)6(mmTTmmV εδθ ++=

where TTm is total travel time by mode m,

mε represents unobserved heterogeneity( assumed to be iid GEV),

and θm, δ are parameters.

So the total number of trips by mode m from zone i and j are:

)7(|Pr ijmijTijmT =

This study simplifies the travel mode choice between public transit and drive-alone.

3.4 Route Choice

Network assignment of trip can include several common features. For example, an all-or-

nothing method assigns all traffic flows between an O-D pair to the shortest path. Capacity-

restrained assignments attempt to approximate an equilibrium solution by iterating between all-or-

nothing traffic loading and recalculating link travel times based on link capacity functions. User

equilibrium (UE) methods utilize an iterative process to achieve a convergent solution

(“equilibrium”) in which no traveler can improve his/her travel time by shifting routes.

The uncertainty in assignment models appears to be small if equilibrium techniques are

used. Leurent (1997) suggested that an equilibrium network assignment method is very stable,

given well-defined criteria and constraints. Indeed, in congested networks the equilibration

process may reduce the magnitude of uncertainties from the interchange models, in the

reproduction of link flows.

This study employs a user equilibrium method in its trip assignment model. UE algorithms

incorporate link capacity functions in their search for convergence to an equilibrium state. This
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function describes the relationship between link flow and link impedance. A common functional

form developed by the Bureau of Public Roads is:






























+=

0

max
01

β
α

q

q
ftt (8)

where t is impedance of a given link at flow q ,

tf is free flow impedance of the link,

maxq is link capacity,

and α0, β0 are volume/delay coefficients.

The standard BPR values for α0 and β0 are 0.15 and 4.0. However, NCHRP report 365

suggests larger values. The larger values, 0.84 and 5.5, are used here.

All together, this sequence of four sub-models produces a set of link-flow estimates.

These are the model outputs of greatest interest in this work. However, any variability in the

output is due solely to uncertainties in input and parameters. These input and parameter

uncertainties are simulated by first specifying their distributions and then generating values

randomly from these distributions. To impose sign constraints on many of these variables (for

example, trip generation rate cannot be less than zero), lognormal distributions are used. To

accommodate covariation across input and parameter values, multivariate distributions were

specified, including the multivariate lognormal distribution.

The four-step model approach is applied into a road network (see Figure 1 in Appendix)

with 25 zones and 818 links, which is separated from the Dallas-Fort Worth highway system. For

outside input, this study uses the demographic data associated with the data. For model

parameters, this study uses mean values from DFW area travel model description report

(NCTCOG 1999). Necessary simplification and modification has been made based on two

published formal manuals (NCHRP Report 187 and 365). However, there are several arbitrary

variation and covariation assumptions such as the equal coefficient of variance for all input and

parameters. More reliable estimates of variation and covariation are likely to require model

estimation using actual travel data since estimates of variation and covariation are rarely reported

in the literature.

The modeling software used here for the first three sub-model steps (i.e., trip generation,

trip distribution, and mode choice) is @Risk (Palisade 1998), which loads through Microsoft Excel

software. This is a very flexible and user-friendly software for Monte Carlo simulation and risk

analysis; however, many standard programming languages and other software packages are

viable for such techniques. TransCAD(Caliper Co., 1996) is used here for the final, trip

assignment sub-model in order to apply its commercialized UE algorithm.
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The results of greatest interest are mean values of link flows and their matrices of

covariation, across model simulations. These are discussed in the following section.
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CHAPTER 4. SIMULATION RESULTS

The sequence of four-step sub-models produces a set of link-flow estimates. The study

simulates the forecasting approach by repeating running the four-step models for 100 times. Final

link flows are obtained from the converged UE assignment results. Most of the ratios of volume

versus capacity are relatively low (85% of them are less than 0.76), which indicates the

assignment equilibrium is not under a congestion situation. In fact the result is a portion of a

general assignment, it only includes morning peak hour house-based work auto trip assignment.

The flow volumes from one assignment are shown in Figure 2. Two arcs are chosen as

the critical links. Critical link one (Rochelle Blvd. between Northgate and Rochelle) presents the

general pattern of links with congested volumes, while critical link two (SH183 eastbound passed

Story Road ramp) presents others with non-congested volumes. The flow distribution of 100

simulation results for these two links are shown in Figure 3. Not surprisingly, given the normal

and lognormal distribution assumptions of input and parameters, the result distributions are

approximately normal.

The input and parameters with uncertainty of all four-step models used in simulation are

shown in Table 1. All the uncertainty in terms of coefficient of variation are set to be 0.30. As can

be shown, the inverse of the coefficient of variation is equal to the T-statistic value of a

parameter. The 0.30 uncertainty value of a parameter suggests that the corresponding T-statistic

value is larger than 3, which indicates the parameter is significant at 0.05 level in the estimation.

The overall uncertainty results can be shown in terms of coefficient of variation in Table

2. As evident in these results, the variability of the selected link flows is sizable. Both coefficients

of variation of the two link flows are larger than 0.30, which suggests the final uncertainty may be

compounded to be higher than any input or parameter uncertainty. The flow uncertainty appears

not to have a strong relation with congestion. A more elaborated illustration is shown in Figure 3,

which represents the uncertainty of all loaded links respected to their volume/capacity ratios. As

can be seen, most link flow uncertainties are larger than 0.30, not matter what their v/c ratio

values are. Some points in the left lower area provide a possibility that under an extremely low

flow/capacity level, the overall uncertainty may be reduced to some degree. However, the

average travel time on the link shows a relatively strong relation with congestion. The travel time

uncertainty of the congested link, 1.899, is much higher than that of the uncontested link, 0.127.

The total vehicle mile traveled (VMT) of the network is a weighted sum of individual link

flows. The uncertainty of VMT, in terms of the coefficient of variance, 0.236 is relatively low. 14.

Same as the uncertainty in the total vehicle hour traveled (VHT) of network. However, the VHT of
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a congested network is less reliable; thus, it is seldom used in assessing transportation plans. As

can be seen in Table 3, the link flows show great correlation between one another. For

probabilistic simulations, correlations greater than 0.5 between input and output indicate

substantial dependence. Since the total VMT is the weighed sum of all link flow volumes, there is

a strong correlation between total VMT and individual link flows. That explains why the

uncertainty of total VMT is generally lower than that of most links.

Overall, the uncertainty propagation process through the four-step travel demand

forecast model is shown in Figure 5. In each model step, there is a finite amount of input and

output. Given the distribution assumption of the input and parameters of the model, the simulation

yields 100 observations of each output. Although the amount of output of each step is different,

the average coefficient of variation can be collected to track the changes in uncertainty through

each step. The five percentile and ninety-five percentile of the uncertainty among each step is

also shown in Figure 5 to indicate the variability of the uncertainty. Even though all the input

uncertainties are set to be the same value, 0.30, the actual simulation data drawn from certain

distributions may contain uncertainties slightly different from this value. Thus, the 5% and 95% of

demographic input uncertainty are 0.2592 and 0.3397 respectively.

As can be seen, the increasing average uncertainty in the first three step models

suggests significant uncertainty propagation through those models. Nevertheless, the final step

assignment model reduces the previous compounded uncertainty, but it generally cannot lessen

the uncertainty to a level lower than the input uncertainty. The expanding 5% and 95% bound

suggests that through the four-step model, the variability of final uncertainty extends. Thus, some

link flows’ uncertainty may be reduced substantially while others may increase considerably,

which indicates the possibility for wide swings in system. However, one can improve the UTPP

model forecasting if he cannot avoid this problem. One passable solution for that is to provide the

information regarding uncertainty in final results. Then the policymakers will be aware of the

uncertainty when comparing scenarios.

The simulation results suggests the trip assignment equilibrium technique may reduce

the overall uncertainty, which is partially consistent with Leurent’s (1997) study. Leurent suggests

that in congested networks the equilibration process may reduce the magnitude of uncertainties

in the reproduction of link flows. One possible explanation is the capacity constraint restricts the

variability of link flows. However, in this study, the assignment is not under congested situation.

One may suggests that link flows are somehow the sum of related O-D trip pairs. With strong

correlation among those O-D trips, the combined uncertainty in link flow may be less than the

uncertainty coming from the prior model results.
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In order to promote improved understanding and interpretation of the four-step model

approach, sensitivity analysis is useful for identifying model input that are key contributors to

uncertainty in model output. The results of sensitivity analysis can be shown in Table 4. The “*”

marks indicate the significant correlations at 0.05 level in the table. Since there are a lot of

demographic input variables (household, employment of each zone), only the sums of those

variable across zones are presented. One can compare the output’s sensitivity to parameters in

each model step. Not surprising, the parameter which has the strongest correlation with link flows

is the trip generation rate. This is partly consistent with Smith and Cleveland’s results (1976).

Also, the overall output is sensitive to the demographic input. Most zonal demographic inputs

contribute substantially to the overall uncertainty in link flows. Given the linear function pattern of

the trip generation model, it is not surprised that the demographic inputs and the trip generation

parameters show strong linear correlation with the overall outputs. The pattern is more obvious

for the link flows nearby, which is consistent with Mackinder and Evans’ study (1981). However,

the overall uncertainty evinces a relatively small sensitivity to other three models (trip distribution,

mode split, and trip assignment), which may be contributed by the complex calculation of those

models, e.g., the trip balance iteration in trip distribution and the equilibrium technique used in trip

assignment.
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CHARTER 5. CONCLUSIONS

This work investigates the stability of contemporary transport demand output. By

simulating four-step model over a 25-zone network. Sensitivity analysis is adopted to target

resources to overall uncertainty.

The results of this work suggest that uncertainty is compounded over travel demand

model and highly correlated across output. The propagated uncertainty varies remarkably in link

flows, thus, some link flows may be more uncertain than others. The final step model, trip

assignment, may reduce prior increased uncertainty through the first three steps, but generally

could not lessen the uncertainty lower than the input uncertainty. Mispredictions at early stage

(e.g., trip generation) of multi-stage models appear to be amplified across later stages. Flows on

various links show high correlation. That suggests they are resulted from a equilibrium

assignment. Overall, these results indicate that predictions from many travel demand models may

be highly uncertain and improvements to the models and their estimates are sorely needed.

Transportation modelers should be able to recognize, calculate, and show uncertainty. On the

other hand, policy make should be able to know uncertainty and make policies based on

uncertainty.

Future work on this and related topic is needed. For example, applications on more

realistic networks may be examined. A variety of common model types can be tested. Moreover,

one may compare different uncertainty level in input resulting overall uncertainty. Modeler then

will be able to know which part of the modeling approach needs more work and how intense the

effort should be. Additionally, feedback from travel-time estimates to destination, mode, and route

choices is needed.
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APPENDIX

TABLE 1. SIMULATION SET-UP FOR THE 25-ZONE NETWORK

Forecasting Input

The mean values of input (household and different types of employment) come from the data set
associated with the DFW area travel model. The coefficients of variation are all set to 0.30. The
S.D.s are then determined by multiplying the mean values by corresponding coefficient of
variation. The distribution is assumed to be multivariate normal with a same correlation coefficient
(0.30) among each other.

Model Parameters*

Model Parameter Mean S.D. Coefficient
of Variation Distribution Covariance

α 2.303 0.691 0.30 Lognormal -
β1,2 1.389 0.417 0.30 Lognormal -
β1,3 1.328 0.398 0.30 Lognormal -
β1,4 1.309 0.393 0.30 Lognormal -
β1,5 1.476 0.443 0.30 Lognormal -
β2,2 1.396 0.419 0.30 Lognormal -
β2,3 1.530 0.459 0.30 Lognormal -
β2,4 1.448 0.434 0.30 Lognormal -
β2,5 1.386 0.416 0.30 Lognormal -
β3,2 1.304 0.391 0.30 Lognormal -
β3,3 1.371 0.411 0.30 Lognormal -
β3,4 1.369 0.411 0.30 Lognormal -

Trip
Generation

β3,5 1.392 0.418 0.30 Lognormal -
Trip

Distribution γ 1.16E-3 3.48E-4 0.30 Lognormal -

θtransit -0.549** 0.165 0.30 MVLognormal*Model Split δ -0.0297 0.0089 0.30 MVLognormal*
ρ=0.67

α0 0.84 0.252 0.30 Lognormal -Traffic
Assignment β0 5.50 1.65 0.30 Lognormal -

* The mean values of parameters are from DFW area travel model report. (NCTCOG 1999).
**To be negative, the parameter is drawn from a lognormal distribution with |mean| and SD, and
add a minus sign.
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TABLE 2. NETWORK FLOW SIMULATION RESULTS*

Variable Description Mean S.D. Coefficient
of Variation

Avg. V/C
Ratio

f1
Main direction flow on

link 1 1172 363 0.310 1.116

f2
Main direction flow on

link 2 1522 489 0.322 0.235

T1
Average travel time on

link 1 (hour) 0.1058 0.201 1.899 -

T2 Average travel time on
link 2 (hour) 0.0137 0.0017 0.127 -

Total VMT Total vehicle-miles
traveled on the network 129518 30579 0.236 -

Total VHT Total vehicle-hours
traveled on the network 3347 777 0.232 -

* All the results are based on converged UE assignments for 100 runs. The total demand
(morning peak hour HBW auto trips) distributes with a mean of 23856 and S.D. of 5503.
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TABLE 3. CORRELATION COEFFICIENTS BETWEEN LINK FLOWS

f1 f2 Total VMT Total VHT

f1 1.000 0.601 0.849 0.862
f2 0.601 1.000 0.724 0.725

Total VMT 0.849 0.724 1.000 0.983
Total VHT 0.862 0.725 0.983 1.000
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TABLE 4. SAMPLE CORRELATION BETWEEN INPUT AND OUTPUT

Model Parameter f1 f2 Total VMT Total VHT

Α 0.0589 0.1280 0.1024 0.0990
β1,2 0.0345 0.0133 -0.0399 -0.0283
β1,3 0.2150* 0.3182* 0.3396* 0.3204*
β1,4 -0.0274 -0.0594 -0.0262 -0.0269
β1,5 0.0467 0.0343 -0.0008 0.0035
β2,2 0.0869 -0.0248 0.0549 0.0562
β2,3 -0.1094 0.0394 -0.0086 -0.0004
β2,4 0.0091 -0.0123 -0.0023 -0.0076
β2,5 0.1270 0.2089 0.1500 0.1483
β3,2 0.1013 0.1582 0.0326 0.0488
β3,3 0.6052* 0.3646* 0.5944* 0.5987*
β3,4 -0.0356 -0.0226 -0.0636 -0.0555

Trip
Generation

β3,5 -0.1701 -0.1753 -0.1259 -0.1297
Trip

Distribution Γ 0.0244 0.0099 0.0084 0.0049

θtransit 0.0711 0.1558 0.1121 0.1075
Model Split

0.0457 0.1651 0.1327 0.1271
α0 -0.0431 -0.0427 -0.0793 -0.0628Traffic

Assignment β0 -0.0409 0.0305 0.0223 0.0080
Total Household 0.4419* 0.3354* 0.4719* 0.4791*

Total Basic
Employment 0.4511* 0.3230* 0.5639* 0.5706*

Total Retail
Employment 0.5212* 0.3244* 0.5347* 0.5427*

Input

Total Service
Employment 0.6055* 0.3872* 0.6427* 0.6517*



27

TABLE 5. RANK CORRELATION BETWEEN INPUT AND OUTPUT

Model Parameter f1 f2 Total VMT Total VHT

α 0.0698 0.0959 0.1558 0.1596
β1,2 0.0191 0.0220 -0.0433 -0.0291
β1,3 0.1471* 0.2296* 0.3019* 0.2827*
β1,4 0.0594 -0.0509 0.0585 0.0602
β1,5 0.0713 0.0387 0.0211 0.0248
β2,2 0.1254 -0.0109 0.0930 0.1001
β2,3 -0.1326 -0.0495 -0.0485 -0.0474
β2,4 -0.0254 -0.0053 0.0178 0.0050
β2,5 0.1982 0.2266* 0.1897 0.1909
β3,2 0.0291 0.1156 0.0031 0.0155
β3,3 0.5879* 0.3360* 0.5517* 0.5531*
β3,4 -0.0836 -0.0899 -0.1048 -0.1050

Trip
Generation

β3,5 -0.1582 -0.1437 -0.1548 -0.1625
Trip

Distribution γ 0.0057 -0.0184 -0.0327 -0.0399

θtransit 0.0963 0.1187 0.1227 0.1139
Model Split

δ 0.0815 0.1530 0.1303 0.1282
α0 -0.0068 -0.0534 -0.0469 -0.0308Traffic

Assignment β0 -0.0430 0.0641 0.0045 -0.0053
Total Household 0.4408* 0.3548* 0.4679* 0.4727*

Total Basic
Employment 0.4276* 0.3172* 0.5327* 0.5391*

Total Retail
Employment 0.4950* 0.3334* 0.4924* 0.5010*

Input

Total Service
Employment 0.5680* 0.3867* 0.6093* 0.6141*

Note: * indicates the correlation is significant at 0.05 level(2-tailed).
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Figure 1. The 25 zones subnet from DFW highway network
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Figure 3. The distribution of 100 assignment results of selected links
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